Building better and smarter starts with 50mm, 75mm or 100mm Eco Panel. CHAD Group Australia P/L Aerated Autoclaved Concrete (AAC) Eco Panel provides ultra-high integrated insulation and facilitates building a home quicker. Being clad much faster than conventional bricks, the speed of construction reaches key stages quickly. Eco Panel is as solid and as durable as traditional masonry, yet its lightweight properties get any project to “Lockup” quicker. Eco Panel adds to a safer and cleaner worksite with less “cleanup” at the conclusion of the project. In comparison to traditional rendered masonry products, Eco Panel saves time and money. The inherent

Thermal Mass and Thermal Resistance properties of Eco Panel showcases its energy efficiency properties. Eco Panel also brings to the total package further benefits of higher fire resistance. Eco Panel does not combus in the event of fire and will not omit toxic gases. 75mm Eco Panel provides a Load Bearing FRL of 240/240/240. 50mm Eco Panel provides a Load Bearing FRL of 120/120/120. Eco Panel also has sound acoustic reducing qualities equivalent and better than traditional masonry products.

AAC Eco Panel is an environmentally friendly product. It is pollution free, emits no harmful emissions and has an excellent environmental performance. It has fantastic design flexibility and it's aesthetic appeal gives designers the range and flexibility of using a masonry product where previously non-masonry products could be used.
Introduction

ECO Panel (AAC) is manufactured via a combination of lime and/or cement, combined with finely divided sand and other filler materials. This mix is poured into a mould, an expanding agent reacts with the other elements, and the mix begins to rise in the mould while the reaction with the expanding agent creates finely dispersed air bubbles. This is cured under high pressure and temperature to provide a relatively strong, lightweight cellular structure, incorporating small uniformly distributed bubbles.

After the semi solid material is pre-cured, the block out of the mould is cut and sliced into the required sizes. Once appropriately sized, the panels are steam pressure cured in autoclave ovens. This manufacturing process is central to what gives AAC panel its excellent...
ECO Panel Aerated Autoclaved Concrete (AAC)

The ECO PANEL (AAC) system is an innovative Autoclaved Aerated Concrete light-weight cement-based material, incorporating small uniformly distributed bubbles that result in its unique properties of lightness, high thermal resistance, workability and strength. ECO PANEL (AAC) are also steel reinforced AAC wall or floor panels.

This manual is available in hardcopy, softcopy or electronic form and is intended for use by qualified and experienced architects, engineers and builders. The authors, publishers and distributors of this manual, sample specification and the associated drawings do not accept any responsibility for incorrect, inappropriate or incomplete use of this information. It is the express intention that designers will edit them to suit the particular requirements of specific construction projects.

This manual has been prepared in the context of the National Construction Code of Australia. Architects, engineers and builders should make themselves aware of any recent changes to these documents, to any Standards referred to therein, or to local variations or requirements. The authors, publishers and distributors of this specification and the associated drawings do not accept any responsibility for failure to do so.

There are many factors to be considered when designing building solutions from Eco Panel Autoclaved Aerated Concrete (AAC) panels, and CHAD Group Australia P/L provides design tables and charts to assist the designer. The Eco Panels are grouped into two basic types relating to application. These types being:

- Floor panels;
- Wall panels;
Applications

AAC Panels are reinforced, and are designed for floors and walls in multi-residential, commercial, residential (domestic) and industrial construction.

MULTI-RESIDENTIAL CONSTRUCTION
- Non-loadbearing external wall panels, generally panels are fixed to a reinforced concrete structural frame.
- Internal wall panels – party walls / risers / shaft walls.

COMMERCIAL CONSTRUCTION
- Non-loadbearing external wall panels.

RESIDENTIAL (DOMESTIC) CONSTRUCTION
- External cladding for loadbearing wall panels, limited to 2 storey construction;
- Roof panels;
- Floor panels

INDUSTRIAL CONSTRUCTION
- Non-loadbearing wall panels, larger panels spanning vertically can be successfully incorporated into industrial wall applications.
- Mezzanine doors
- Ceiling panels – fire exits.
Design Actions

CODES AND REGULATIONS

Design procedures for the verification of members and structures consisting of AAC panels generally follow the design principles outlined in Australian Standard AS3600-2009 – Concrete Structures, with the exception of cover requirements for durability and development length for reinforcement.

The loadings on the panel products are to be determined in accordance with the Australian Standard AS1170 “Design Actions” series of codes. These codes cover typical loadings, such as dead load, live load, wind load, earthquake load, as well as others.

GUARANTEE AND CERTIFICATION

CHAD Group Australia is a supplier of AAC products. CHAD Group Australia guarantee the products and the products used in the systems described in CHAD Group Australia literature, subject to the terms and conditions of CHAD Group Australia Guarantee. We do however not guarantee the components, products or services, such as installation and specialist advice, supplied by others.

CHAD Group Australia conducts appropriate testing of its products and systems, and sources opinions to determine performance levels. These include structural, fire and acoustic. CHAD Group Australia can provide copies of test results and opinions presenting the performance characteristics of its products and systems.

When using Eco Panel systems in specific projects, CHAD Group suggest specialists be consulted to ensure compliance with the National Construction Code of Australia and relevant Australian Standards. CHAD Group Australia can provide a certification for its panel products. For a specific project, an appropriate specialist can provide the certification for the relevant performance criteria of the systems and supporting structure.
Summary of Properties of the PANEL AAC Products

<table>
<thead>
<tr>
<th>Application</th>
<th>Wall Panels 50mm</th>
<th>Wall Panels 75mm</th>
<th>Wall Panels 100mm</th>
<th>Floor Panels 75mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel thickness, T, mm</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td>75</td>
</tr>
<tr>
<td>Panel width, W, mm</td>
<td>600</td>
<td>600</td>
<td>450</td>
<td>600</td>
</tr>
<tr>
<td>Panel length, L, mm</td>
<td>2200</td>
<td>Varies</td>
<td>Varies</td>
<td>1,800</td>
</tr>
<tr>
<td>Wet density kg/m³ (wout reo weight)</td>
<td>720 - 820</td>
<td>720 - 820</td>
<td>720 - 820</td>
<td>720 - 820</td>
</tr>
<tr>
<td>Oven-dry density, kg/m³</td>
<td>520 - 620</td>
<td>520 - 620</td>
<td>520 - 620</td>
<td>520 - 620</td>
</tr>
<tr>
<td>Compressive strength average Mpa</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Number of layers of Reinforcement</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Main reinforcement diameter, mm</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>No of reinforcement strands</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Reinforcement centres</td>
<td>25/25</td>
<td>37/37</td>
<td>18/64/18</td>
<td>37/37</td>
</tr>
<tr>
<td>Characteristic uncond compressive</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Characteristic oven dry compressive</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Mean elastic modulus E Mpa</td>
<td>1800</td>
<td>1800</td>
<td>1800</td>
<td>1800</td>
</tr>
<tr>
<td>Panel Kg weight per m² approx</td>
<td>28</td>
<td>55</td>
<td>70</td>
<td>55</td>
</tr>
<tr>
<td>Acoustic Performance dBA</td>
<td>32</td>
<td>36</td>
<td>36</td>
<td>32</td>
</tr>
<tr>
<td>With Insulation</td>
<td>R2.0 R2.5 R3.0</td>
<td>R1.5 R2.0 R2.5</td>
<td>R1.5 R2.0 R3.5</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>2.5 3.0 3.5</td>
<td>2.32 2.82 3.32</td>
<td>2.46 2.96 3.46</td>
<td></td>
</tr>
</tbody>
</table>
Simple Spans - Capacity Kpa

<table>
<thead>
<tr>
<th>Im</th>
<th>Wall Panels 50mm</th>
<th>Wall Panels 75mm</th>
<th>Wall Panels 100mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>4.66</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>0.45</td>
<td>6.51</td>
<td>14.22</td>
<td></td>
</tr>
<tr>
<td>0.600</td>
<td>3.66</td>
<td>8.00</td>
<td></td>
</tr>
<tr>
<td>0.750</td>
<td>2.35</td>
<td>5.12</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>1.63</td>
<td>3.56</td>
<td>15.71</td>
</tr>
<tr>
<td>1.2</td>
<td>0.92</td>
<td>2</td>
<td>8.84</td>
</tr>
<tr>
<td>1.5</td>
<td>1.28</td>
<td></td>
<td>5.66</td>
</tr>
<tr>
<td>1.8</td>
<td>0.89</td>
<td></td>
<td>3.93</td>
</tr>
<tr>
<td>2.1</td>
<td>0.65</td>
<td></td>
<td>2.89</td>
</tr>
<tr>
<td>2.4</td>
<td>0.5</td>
<td></td>
<td>2.21</td>
</tr>
<tr>
<td>2.7</td>
<td></td>
<td></td>
<td>1.75</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1.41</td>
</tr>
<tr>
<td>3.3</td>
<td></td>
<td></td>
<td>1.17</td>
</tr>
</tbody>
</table>
ECO AAC Steel Reinforced Autoclaved Aerated Panels

ECO Panels AAC Steel Reinforced Autoclaved Aerated Panels have the following properties: Characteristic compressive strength, $f_{ck} = 5.0 \text{ MPa}$

Characteristic flexural strength, $f_f = 1.0 \text{ MPa}$ Characteristic elastic modulus, $E = 1,800 \text{ MPa}$

Panel thickness, $T = 75 \text{ mm}$ Panel width, $B = 600 \text{ mm}$

Panel lengths (standard sizes), $L = 2,400 \text{ mm}, 2,550 \text{ mm}, 2,700 \text{ mm}, 2,850 \text{ mm}, 3,000 \text{ mm}$

Reinforcement yield strength, $f_{sk} = 235 \text{ MPa}$ Reinforcement diameter, $R = 5\text{mm}$

Number of reinforcing strands, $N = 5$ (over a 600 mm width) $N_s = 8$ (over $2,700$ to $3,000 \text{ mm}$ panel length)

Depth of Reinforcement, $d = 45 \text{ mm}$ (30 mm from opposite face)

Moment capacity (medium reinforcement, $0.286 < s < 0.375$), $\Phi \, Mu = 0.685 \text{ kN.m}$

Using this data, the ultimate bending capacities (expressed in terms of uniform pressure) for various spans of ECO Panels AAC Steel Reinforced Autoclaved Aerated Panels are identified in the following table.

75 mm ECO Reinforced AAC Panels

Factored ultimate bending capacities
(expressed as uniform pressures (kPa))

<table>
<thead>
<tr>
<th>Span, m</th>
<th>$d = 45 \text{ mm}$</th>
<th>$d = 30 \text{ mm}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,400</td>
<td>0.94</td>
<td>0.58</td>
</tr>
<tr>
<td>2,550</td>
<td>0.84</td>
<td>0.52</td>
</tr>
<tr>
<td>2,700</td>
<td>0.74</td>
<td>0.46</td>
</tr>
<tr>
<td>2,850</td>
<td>0.67</td>
<td>0.41</td>
</tr>
<tr>
<td>3,000</td>
<td>0.60</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Notes:

1. This table is based on the assumption that the maximum span corresponds to the panel length. For shorter spans, the capacities will be higher.

2. In a 75 mm thick panel, the main reinforcement is 45 mm from one face and 30 mm from the other face.
50 mm ECO PANEL (AAC) Steel Reinforced Autoclaved Aerated Wall Panels with reinforcement in centre

75 mm ECO PANEL (AAC) Steel Reinforced Autoclaved Aerated Wall Panels with reinforcement in centre
100 mm ECO PANEL (AAC) Steel Reinforced Autoclaved Aerated Wall Panels
75 mm ECO PANEL (AAC) Steel Reinforced Autoclave Aerated Floor Panels

- Spanning joists at 450 mm centres, are suitable for the support of 3.0 kPa distributed or a 1.8 kN point load over an area of 350 mm² (located at least 100 mm from the panel edge). This corresponds to balcony loads for domestic housing.
- Spanning joists at 600 mm centres, are suitable for the support of 1.5 kPa distributed or a 1.8 kN point load over an area of 350 mm² (located at least 100 mm from the panel edge). This corresponds to the internal loads for domestic housing.
- The specifier and builder must ensure that there is provision to prevent and/or control cracking of any brittle floor coverings, such as tiles, particularly at 600 mm joist spacing. In the case of 600 mm joist spacing, ductile surfaces are more appropriate.
Structural Design Procedure

This section covers the structural design of ECO PANEL (AAC) for compliance with the structural requirements of the National Construction Code of Australia.

DESIGN AND CONSTRUCTION STANDARDS

The National Construction Code of Australia provides the overall regulatory framework for the design and construction of buildings in Australia.

- Eco Panels AAC, provided as steel reinforced autoclaved aerated panels, are designed in accordance with the recommendations of "RILEM Recommended Practice – Autoclaved Aerated Concrete – Properties, Testing and Design". Because this system is outside the scope of the most relevant National Construction Code of Australia referenced document, AS3700, its use must be treated, under the National Construction Code of Australia, as an Alternative Solution in a deemed to satisfy capacity.
- Eco Panels AAC, provided as autoclaved aerated blocks set in thin-bed adhesive, are designed in accordance with AS 3700-2001 Masonry Structures.

LOADS

Eco Panels AAC walls should be designed to withstand the loads set out in the National Construction Code of Australia and Standards, as listed below:

- AS/NZS 1170.0 Structural design actions Part 0: General principles
- AS/NZS 1170.1 Structural design actions Part 1: Permanent, imposed and other actions
- AS/NZS 1170.2 Structural design actions Part 2: Wind actions
- AS/NZS 1170.3 Structural design actions Part 3: Snow and ice actions
- AS 1170.4 Structural design actions Part 4: Earthquake actions in Australia
- AS 4055 Wind loads for housing
Fire Design

Autoclaved Aerated Concrete (AAC) is one of the most effective building materials for providing a barrier to fire. AAC has shown itself to be non-combustible and very stable under fire loading, resulting in structural systems that have high fire resistance level (FRL) ratings. The properties that highlight the high level performance of AAC under fire loading are following:

NATIONAL CONSTRUCTION CODE OF AUSTRALIA AND AUSTRALIAN STANDARDS
The NCC Volume 1 Part C defines the fire resistance requirements for Class 2 to 9 buildings. The NCC Volume 2 Part 3.7.1 defines the fire resistance requirements for Class 1 and 10a buildings. Various Australian Standards, including AS 3700 set out the means of determining the fire resistance of masonry, including AAC, for the three limit states described in the NCC. It requires designers to check three separate fire performance limit states:

- Structural adequacy (resistance to collapse)
- Integrity (resistance to cracking)
- Insulation (resistance to the passage of heat).

FIRE DESIGN AND FIRE RESISTANCE LEVEL (FRL) RATINGS
The National Construction Code of Australia regulations express the fire performance of a wall with the rating system called the ‘Fire Resistance Level’ (FRL). The FRL ratings in the CHAD Group Technical Manual have been determined by testing in accordance with AS1530.4 – Fire Resisting Tests of Elements of Building Construction – EXOVA.

The fire FRL rating consists of three performance criteria:

a) resistance to collapse
b) resistance to cracking
c) resistance to the passage of heat

For non-load bearing walls, there is no requirement to express the ‘structural adequacy’ criteria.

FIRE CERTIFICATE AND REPORTS
Copies of the test reports for fire testing performed on the CHAD Group blocks are available by contacting CHAD Group.

ADDITIONAL DESIGN CONSIDERATIONS
Fire-rated block walls should comply with both strength and robustness requirements and minimum slenderness ratios outlined in AS3700 – Masonry Structures code.
Fire Tests

Load Bearing Vertical Load Applied 50mm EcoPanel FRL 120/120/120

Fire Tests to AS1530.4 for 75mm Reinforced AAC Eco Panel as per Exova Warrington (Australia) P/L report 30864500.1 gave the following results. This information can be sued to check the fire performance of a proposed structure.

Wall Structure Tested: AAC Eco Panel with R1.5 fiberglass batts, fixed to steel framing and 10mm standard plasterboard.

Wall Dimensions
- Height 3000mm
- Width 3000mm
- Panel Thickness 50mm
- Insulation R1.5 fiberglass
- Plasterboard Standard 10mm Recessed Edge Plasterboard
- Framing 90x45 MGP10 Timber Framing
- Channel 16mm – P301 Rondo Metal Batten

Time to Failure
- Structural Adequacy Result 156 mins
- Integrity 156 mins
- Insulation 156 mins

Load Bearing Vertical Load Applied 75mm EcoPanel FRL 240/240/240

Fire Tests to AS1530.4 for 75mm Reinforced AAC Eco Panel as per Exova Warrington (Australia) P/L report 30908400 gave the following results. This information can be sued to check the fire performance of a proposed structure.

Wall Structure Tested: AAC Eco Panel with R1.5 fiberglass batts, fixed to steel framing and 10mm standard plasterboard.

Wall Dimensions
- Height 3000mm
- Width 3000mm
- Panel Thickness 75mm
- Insulation R1.5 fiberglass
- Plasterboard Standard 10mm Recessed Edge Plasterboard
- Framing 90x45 MGP10 Timber Framing
- Channel Rondo P303 Top Bat Channel

Time to Failure
- Structural Adequacy Result 241 mins
- Integrity 241 mins
- Insulation 241 mins
50mm AAC ECO Wall Panels
Acoustic Properties & Performance

SOUND
Sound will have two basic characteristics – amplitude and frequency (or pitch) of the sound. The amplitude of the sound is a measure of the magnitude of the oscillation. The frequency of the sound is a measure of how quickly the vibrating surface is moving back and forth.

ACOUSTIC MATERIALS - SOUND BARRIERS AND SOUND ABSORBERS
There are materials that absorb sound and prevent it reflecting around a room for example, echo. These materials are sound absorbers and are usually soft to touch for example Glasswool insulation, carpets, curtains and mineral fibres.

The second categories of materials are those that reduce transmission of sound through the material from one room to another. These materials are referred to as sound barriers for example Eco Panel Wall and Floor Panels.

Both types of materials are necessary for providing a satisfactory acoustic environment in a building.

The careful combination of acoustic barriers and sound absorbent materials can provide a very cost effective and space efficient solution.

STC & RW ACOUSTIC RATING SYSTEMS
The National Construction Code of Australia (NCC) presents the Performance Requirements for sound insulation ratings. The sound insulation ratings set minimum values to consider for two types of sound: airborne sound and impact generated sound.

The Rw rating curve (similar to the STC curve) was basically derived from sound insulation requirements for speech. Modern living with its use of large television sets, home entertainment units for music and the home cinema with its surround sound had increased the requirement for low frequency sound insulation. In this regard, the Rw spectrum is inadequate. The ISO rating system has a correction factor for traffic noise for external walls, roofs and windows. This correction factor Ctr when applied to the Rw curve also provides better relationship of sound insulation for the low frequencies of the various home entertainment systems. The term Rw + Ctr has been adopted in the Australian NCC and the Association of Australian Acoustical Consultants Star Rating System for Apartments and Townhouses.
NCC VOLUME 1 CLAUSE F5.5 REQUIREMENTS

<table>
<thead>
<tr>
<th>NCC Vol 1 Clause F5.5 Requirements</th>
<th>Walls that separate sole occupancy units in a Class 2 or 3 building or between two Class 1 buildings</th>
<th>Rw + Ctr (\text{(airborne)}) not less than 50,</th>
<th>Impact sound resistance, if the wall separates a habitable room in one sole occupancy unit from a bathroom, sanitary compartment, laundry or kitchen of another unit or plant room or lift shaft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walls that separate a sole occupancy unit from a plant room, lift shaft, stairway, public corridor, public lobby or the like in a Class 2 or 3 building</td>
<td>Rw (\text{(airborne)}) not less than 50</td>
<td>Impact sound resistance, if the wall separates a habitable room in one sole occupancy unit from a plant room, or lift shaft.</td>
<td></td>
</tr>
<tr>
<td>Walls that separate two sole occupancy units or separates a sole occupancy unit from a kitchen, bathroom, sanitary compartment (not en-suite), laundry, plant room or utilities room in a Class 9c aged-care building</td>
<td>Rw (\text{(airborne)}) not less than 45,</td>
<td>Impact sound resistance if the wall separates a habitable room in one sole occupancy unit from a kitchen or laundry.</td>
<td></td>
</tr>
<tr>
<td>A door incorporated in a wall that separates a sole occupancy unit from stairway, public corridor, public lobby or the like in Class 2 or 3 building and a door incorporated in a wall that separates a sole occupancy unit from a kitchen or laundry in a Class 9c aged care building.</td>
<td>Rw (\text{(airborne)}) not less than 30</td>
<td>Walls requiring impact sound resistance shall consist of two leaves separated by a gap of at least 20 mm (and in Class 2 or 3 where required, connected by resilient ties).</td>
<td></td>
</tr>
</tbody>
</table>
NCC VOL 2 CLAUSES 3.8.6.1 TO 3.8.6.4 REQUIREMENTS

<table>
<thead>
<tr>
<th>NCC Vol 2 Clauses 3.8.6.1 to 3.8.6.4 Requirements</th>
<th>Walls that separate a bathroom, sanitary compartment, laundry or kitchen of one Class 1 building from a habitable room (other than a kitchen) in an adjoining Class 1 building (dwelling) shall have:</th>
<th>Rw + Ctr (airborne) not less than 50</th>
<th>Discontinuous construction. For cavity walls, a minimum of 20 mm cavity between two separate leaves, which may be connected, if required for structural purposes, with resilient ties. Northern Territory, Queensland and Western Australia have varied this requirement to Rw not less than 50 and Impact Sound Resistance</th>
</tr>
</thead>
</table>

Walls are required to be detailed in accordance with NCC Vol 2 Clause 3.8.6.3, which make provision for the sealing of sound insulated walls at junctions with perimeter wall and roof cladding. This clause also requires that masonry joints be filled and provides for sound insulated articulation joints. NCC Vol 2 Clause 3.8.6.4 makes provision for services in sound insulated walls.

Walls required to have a sound insulation shall be constructed to the underside of:

- A floor above
- A ceiling with the same acoustic rating
- A roof above.

Flanking and Indirect Sound Leaks
Acoustic Performance of AAC ECO Panels

Weighted sound index,

\[Rw = 27.7 \log_{10}(M) - 11.6 \text{ dB} \]

Where \(M \) = the surface mass of the wall in kg/m\(^2\)

Based on a bulk density of 520 kg/m\(^3\) and a panel thickness of 75 mm, the resulting predicted weighted sound index would be 32 dBA

Weighted sound index data, used to support designs to NCC Volume 1 Part F5 or NCC Volume 2 Clause 3.8.6, should be determined in accordance with AS/NZS 1276.1.

EFFECT OF JOINTS AND GAPS ON SOUND ATTENUATION

Gaps reduce the sound attenuation of a wall. Laboratory tested walls have full joints. Site construction must also have full joints to ensure similar sound attenuation. Gaps around the vertical edges of a wall and at the ceiling will diminish the sound resistance of a wall. A gap 0.1% of wall area (corresponding to a 3 mm gap along the length of a 3 m high wall) can reduce the sound transmission resistance by typically 10-20 dB. Gaps around the periphery of walls should be sealed using a high-density acoustically-rated mastic or similar sealant. Sealants should have a typical density of 1600 kg/m.

Sealants should be applied to both faces of the wall and should be applied to a depth equal to the width of the gap. Typical penetrations in walls include mechanical services ducts, refrigerant pipes, hydraulic reticulation lines, waste pipes, fire sprinklers, and electrical cables. It is essential to provide an acoustically rated seal around the penetration.

EFFECT OF CHASES ON SOUND ATTENUATION

Chases in walls diminish the sound attenuation. Chases should not extend deeper than 25mm into the wall. All chases should be rendered over after the pipes or cables are installed.

Water services should not be chased whatsoever into Eco Panel.
Energy Efficiency and Thermal Performance

THERMAL DESIGN
Energy savings in the operation of buildings are of particular importance as the cost of energy for heating and air conditioning in most cases represent the major cost factor in the operating cost of a building. The energy retention or loss characteristics of a building are directly related to the thermal performance of the building components.

The entrained air in the cellular structure of CHAD Group EcoPanel AAC gives the product excellent thermal insulation properties, as well as good heat retention characteristics. These characteristics contribute significantly to the energy saving performance of the building.

Thermal performance is concerned with the energy retention or loss characteristics of a building system and the consequential reduction of greenhouse gas emissions.

The thermal performance of buildings is affected by a relationship between all components of the structure, and the environment. Some elements of this relationship include:

Windows which occupy a large percentage of the perimeter of the building

The materials of which the walls are constructed affect not only steady state heat transfer, but also the transient response of the internal environment to daily external temperature changes.

Internal temperatures which vary throughout the day and from room to room; and

During the day, solar radiation produces external temperatures which are higher than ambient shade air temperature, and which vary around the building envelop in accordance with orientation and exposure to the sun.

DYNAMICS OF THERMAL MASS
If a building with high thermal mass experiences a heating and cooling cycle which crosses the comfort zone, the roof, walls and floor will store the heat energy for an extended period, gradually releasing it over time. In winter, high thermal mass buildings will remain relatively warm, while in summer, they will remain relatively cool.

In winter, heat trying to pass through the wall will become trapped in the wall and part will slowly pass back into the room. In summer the reverse occurs. Heat trying to pass through the wall from the outside will become trapped in the wall and part will slowly pass back out of the building. The thermal mass of the member (wall, roof/ceiling, floor etc) is the combination of the properties of each of the components (e.g. AAC, insulation, foil etc) and is a function of the mass and specific heat.
THERMAL RESISTANCE OF ECO PANELS AAC EXTERNAL WALLS

Thermal Properties 50 mm

<table>
<thead>
<tr>
<th>Material</th>
<th>External Thickness mm</th>
<th>Thermal Resistance RM2.K/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Air Film</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>AAC 50mm ECO Panel</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Internal Air Film</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>External Thickness mm</th>
<th>Thermal Resistance RM2.K/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Air Film</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>AAC 50mm ECO Panel</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Air Space</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>Internal Plasterboard</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Internal Air Film</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>0.54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>With Insulation</th>
<th>R2.0</th>
<th>R2.5</th>
<th>R3.0</th>
<th>R2.0</th>
<th>R2.5</th>
<th>R3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL WITH INSULATION</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THERMAL RESISTANCE OF ECO PANELS AAC EXTERNAL SINGLE WALLS

Thermal Properties 75 mm

<table>
<thead>
<tr>
<th>Material</th>
<th>External Thickness mm</th>
<th>Thermal Resistance RM2.K/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Air Film</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>AAC 75mm ECO Panel</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>Internal Air Film</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>External Thickness mm</th>
<th>Thermal Resistance RM2.K/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Air Film</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>AAC 75mm ECO Panel</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>Air Space</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>Internal Plasterboard</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Internal Air Film</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>0.82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>With Insulation</th>
<th>R1.5</th>
<th>R2.0</th>
<th>R2.5</th>
<th>R1.5</th>
<th>R2.0</th>
<th>R2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL WITH INSULATION</td>
<td>2.32</td>
<td>2.82</td>
<td>3.32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thermal Properties 100mm

<table>
<thead>
<tr>
<th>Material</th>
<th>External Thickness mm</th>
<th>Thermal Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RM2 K/W</td>
</tr>
<tr>
<td>External Air Film</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>AAC 100mm ECO Panel</td>
<td>100mm</td>
<td>0.57</td>
</tr>
<tr>
<td>Internal Air Film</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.73</td>
</tr>
<tr>
<td>External Air Film</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>AAC 100mm ECO Panel</td>
<td>100mm</td>
<td>0.57</td>
</tr>
<tr>
<td>Air Space</td>
<td>39mm</td>
<td>0.17</td>
</tr>
<tr>
<td>Internal Plasterboard</td>
<td>10mm</td>
<td>0.06</td>
</tr>
<tr>
<td>Internal Air Film</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>0.96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>With Insulation</th>
<th>R1.5</th>
<th>R2.0</th>
<th>R2.5</th>
<th>R1.5</th>
<th>R2.0</th>
<th>R2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL WITH INSULATION</td>
<td>2.46</td>
<td>2.96</td>
<td>3.46</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The Thermal resistance for 50, 75 and 100 AAC ECO Panel is based on 0.336 W/m.k
- The Stud wall is to incorporate a vapor barrier or thermal break
CONDENSATION CONTROL

VAPOUR BARRIER / SARKING OR SISLATION MUST BE INCORPORATED IN CONSTRUCTION

Atmospheric water vapour will condense when it, or air containing it, comes into contact with a surface that is at or below the dew point temperature. Condensation of vapour within the building system should be considered by the designer.

Condensation is a complex problem, and can occur under a variety of conditions, not just cold conditions – hence the appropriate designer should check and approve the building solution for the particular conditions of the project.

To control condensation, an appropriate vapor barrier or thermal break should be incorporated into the wall system.
Foundations

For residential application, the selection of the foundation type for use is based on AS2870, “Residential Slabs and Footings”.

This standard covers the selection of footing designs for the usual range of site conditions, ie soil types and slopes. Where unusual site or load conditions are encountered, advice should be obtained from a practicing Structural Engineer. It is recommended that a practicing Structural Engineer is consulted concerning the application of AS2870 to any particular building construction or site.

The approach to foundation design using AS2870 is to first classify the foundation soil, then assess the topography and select the appropriate footing design to be used. Following is a guide to this foundation design approach. The Structural Engineer should approve this approach before adopting.

For other applications of AAC panels, the foundation or supporting structure should be designed by the project structural engineer to satisfy the masonry.

Cracking in Masonry

As a result of the low tensile strength and negligible ductility, all forms of masonry construction behave as a brittle material and are therefore prone to cracking. Similar to other forms of masonry, careful consideration at design stage and attention to detail during construction of AAC masonry can minimize such adverse effects.

It is important to note that the National Construction Code of Australia is performance based. The performance based approach acknowledges the possibility of cracking and does not consider it to be a defect so long as the structural resistance and other design requirements are maintained.

Cracks up to 1mm, whilst not considered a defect in these documents, may allow water ingress in single skin masonry construction and therefore could be considered a defect under the NCC. This highlights the importance of good coating systems. Coating systems should be able to bridge minor cracking.

Cracking can be due to external effects:-

- Foundation and support movement
- Deformation (shortening, shrinkage, creep, bridging control joints in structure, etc) in adjacent materials.
- Workmanship.
AAC differs slightly from clay brick and concrete block masonry so in addition to general behaviour of masonry, the effect of the following differences must be considered:

- Lower compression capacity.
- Lower tensile strength.
- Lower modules of rupture.
- Lower coefficients of thermal expansion and contraction and drying shrinkage.
- Larger unit size.
- Laid in thin bed mortar which typically has higher compression capacity than units.
- Units are autoclaved.
- Dissipates and absorbs moisture from atmosphere with associated volume change.

Considerations for Design and Detailing

- Elements of masonry blockwork must be isolated from movement.
- Control joints
- Wall restraints
- The compressive strength of render coatings must not exceed that of the blockwork.
- Use plasterboard linings internally
- Use flexible coating systems that are able to bridge hairline cracks.
- Apply mesh within the render over areas of high stress.

Movement Joints

Control Joints, Articulation Joints or Movement Joints should be 10mm wide and should consist of a polystyrene backing rod and a polyurethane material gunned into the joint to form a 10mm x 10mm flexible seal.

The backing rod should be placed into the AAC at a depth which permits a finish of the control joints to finish the mortar joints.

Where a ‘movement joint is adjacent to a door or window frame, a 10mm gap should be provided between the edge of the frame and AAC panel to allow for movement.

During the life cycle of a building, the building and the materials that it is constructed from will move. These movements are due to many factors working together or individually, such as foundation movement (shrinkage and swelling), thermal expansion and contraction, differential movements between materials, climate and soil condition. This movement, unless relieved or accommodated for, will induce stress in the materials, which may be relieved in the form of cracking. To accommodate these movements and relieve and induced stresses, which could potentially crack the wall, movement joints (vertical gaps) shall be installed. There are two categories of joints:

- Articulation joints are provided to relieve induced stresses due to foundation movement. The joints make the walls more flexible by breaking the wall into a series of small panels, which is especially required on reactive ground conditions (clay, peat). Differential movement between the AAC block work and adjacent structural elements need to be accommodated with articulation joints, such as blockwork infill between the structural frames.
• Control Joints (for example an expansion joint), are provided to relieve the induced stresses resulting from thermal expansion or contraction of the AAC, or differential movement between the AAC and another material or structure, such as abutting walls or columns of concrete or brickwork. Control joints can delineate coating shrinkage breaks. A joint may perform the function of either an articulation joint or control joint or both.
• 6 metres maximum for continuous runs of walls
• When measuring the 6 metre run of wall, the measurement continues around corners till the end of the wall or a movement joint.
• For horizontal panels, a vertical movement joint shall be provided at the ends of the panels.

Additionally, the NCC presents the following requirements for articulation joints in unreinforced masonry walls, which is applicable for AAC masonry construction:

Articulation joints must have a width not less than 10mm and be provided:
• in straight, continuous walls having no openings, at not more then 6m centres and not closer than the height of the wall away from corners; and
• where the height of the wall changes by more than 20% at the position of change in height; and
• where openings more than 900 x 900mm occur, at more than 5m centres, and positioned in line with one edge of the opening; and
• at control or construction joints in the footing slabs; and
• at junctions of walls constructed of different masonry materials; and
• at deep chases (rebates) for service pipes.

The project architect and engineer shall be responsible for determining the optimum location of movement joints, as their location is dependent on a variety of factors including most importantly the structural stability and bracing requirements of the building.

Areas to be considered but not limited to, include:
• At corners and supports
• Adjacent to openings
• Adjacent to small openings in long walls
• Walls built in different substrates or different materials
• Geometrical change in wall height ie two story to single story walls
• Locations or junctions of different foundation types and steps in foundations
• Change in thickness or junction of load bearing and non load bearing walls

Attention should be given to ensure that these joints are kept free of all debris and that the connectors are installed as per the manufacturers recommendations. It is most important that under no circumstances should a movement joint be rendered across.
Reinforced AAC ECO Panel Wall Cladding for Domestic Construction

The following specification and details are generally suitable for Reinforced AAC wall cladding for domestic dwellings, subject to confirmation by the Design Engineer. A suitable support framing system must also be provided. Reinforced AAC Panels shall be screw fixed to horizontal light-gauge steel battens, which are fixed to vertical steel studs. There shall be not less than four horizontal battens per panel, with this number increasing for higher wind loads and for panels within 1,200 mm of the building corners. Panels within 1,200 mm of each end of each external wall of a building (i.e. the two 600 mm wide panels closest to the corners) are subject to higher local wind pressures and suctions, and therefore require more battens and more screw fixing than other panels.

Cold-formed sections and accessories shall be manufactured from Z350 galvanised steel (Grade G550) complying with AS 1397, with a zinc coating not less than 350 g/m² and shall comply with AS4600. All battens shall be 24 x 30 x 0.55 BMT Top Hat, Grade G550 or equivalent. We recommend Rondo P303 24mm Cyclonic Batten and Rondo P310 35mm Cyclonic Batten.

All screws shall be No 14 x 100 mm Bugle Batten self drilling galvanised steel screws, fixed from the outside of the building through the AAC panels into the horizontal steel light gauge battens behind.

General Notes:

1. All wind classifications and ultimate pressure calculations are based AS 4055-2006.
2. If AAC Panels are required to provide racking resistance, the screws and supports shall be determined by the structural engineer, taking into account the wind classification and the overall building dimensions.
3. Top and bottom battens shall be positioned within 150 mm of the ends of the panels.
4. Aerosol penetration to an extent depending on distance from the coast:
 RO – Nil
 R1 – 10 g/m²/day
 R2 – 20 g/m²/day
 R3 – 60 g/m²/day
 R4 – 300 g/m²/day

Reinforcement

Unlike conventional masonry, AAC incorporates thin-bed adhesive in lieu of relatively permeable cement-based mortar joints. This feature, together with impermeable blocks, means that the risk of corrosion of both horizontal and vertical reinforcement is significantly reduced.
Reinforced ECO Panel (ACC) Wall Cladding for Domestic Dwellings

The following specification and details are generally suitable for Reinforced AAC wall cladding for domestic dwellings, subject to confirmation by the Design Engineer. A suitable support framing system must also be provided.

Reinforced AAC Panels shall be screw fixed to horizontal light-gauge steel battens, which are fixed to vertical steel studs. There shall be not less than four horizontal battens per panel, with this number increasing for higher wind loads and for panels within 1,200 mm of the building corners.

Panels within 1,200 mm of each end of each external wall of a building (i.e. the two 600 mm wide panels closest to the corners) are subject to higher local wind pressures and suction, and therefore require more battens and more screw fixing than other panels.

Unless specified otherwise by the engineer, the following details and tables shall be used for the cladding of domestic dwellings with 75 mm thick or 100 mm thick Reinforced AAC Panels.

Light gauge steel battens shall comply with the Drawings, Building Regulations and relevant Standards (AS/NZS 4600, AS 3623). Cold-formed sections and accessories shall be manufactured from Z350 galvanised steel (Grade G550) complying with AS 1397, with a zinc coating not less than 350 g/m² and shall comply with AS4600. All battens shall be Rondo P303 24mm Cyclonic Batten or P310 35mm Cyclonic Batten. The surfaces of Zincalume battens that are in contact with the AAC panel shall be painted with a suitable high build paint to guard against adverse chemical reaction.

All screws shall be No 14 x 100 mm Bugle-headed self drilling galvanised steel screws, fixed from the outside of the building through the AAC panels into the horizontal steel light gauge battens behind.

General Notes:

1. All wind classifications and ultimate pressure calculations are based AS 4055-2006
2. If AAC Panels are required to provide racking resistance, the screws and supports shall be determined by the structural engineer, taking into account the wind classification and the overall building dimensions.
3. Top and bottom battens shall be positioned within 150 mm of the ends of the panels.
AAC Panel fixed to steel top-hat section, which is fixed to the supporting structural frame.

Concrete slab-footing/pier system, including reinforcement, membrane etc, designed to AS 2870 or AS 3600 as appropriate.

Combined flashing and damp-proof course.

Sisalation

Window

Structural frame
Vertical Fixing Details 75mm / 100mm

<table>
<thead>
<tr>
<th>Wind Classification</th>
<th>Ultimate Suction kPa</th>
<th>Number of horizontal top hat supports</th>
<th>Number of screws on top and bottom supports</th>
<th>Number of screws on internal supports</th>
<th>Max. spacing of supports</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>1.0</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>900</td>
</tr>
<tr>
<td>N2</td>
<td>1.4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>900</td>
</tr>
<tr>
<td>N3 / C1</td>
<td>2.3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>900</td>
</tr>
<tr>
<td>N4, C2</td>
<td>3.3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>900</td>
</tr>
<tr>
<td>N5, C3</td>
<td>4.9</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>450</td>
</tr>
<tr>
<td>N6, C4</td>
<td>6.7</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>450</td>
</tr>
</tbody>
</table>

Notes:
This table applies for a distance of 1,200 mm from each end of each external wall of a building i.e. it applies to the two 600mm wide panels closest to the corners, and not required to provide racking resistance.

All screws shall be No 14 x 100 mm Bugle-headed self drilling galvanised steel screws (100 mm long for 75 mm thick panels, 125 mm long for 100 mm thick panels), fixed from the outside of the building through the ECO PANELS (AAC) into the horizontal steel light gauge battens behind.
Vertical Fixing Details 50mm

<table>
<thead>
<tr>
<th>Wind Classification</th>
<th>Ultimate Pressure or Suction kPa</th>
<th>Number of horizontal top hat supports</th>
<th>Number of screws on top and bottom supports</th>
<th>Number of screws on internal supports</th>
<th>Stud Spacing, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>1.0</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>600</td>
</tr>
<tr>
<td>N2</td>
<td>1.4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>600</td>
</tr>
<tr>
<td>N3</td>
<td>2.3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>600</td>
</tr>
<tr>
<td>N4, C1</td>
<td>3.3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>450</td>
</tr>
<tr>
<td>N5, C2</td>
<td>4.9</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>450</td>
</tr>
<tr>
<td>N6, C3</td>
<td>6.7</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>450</td>
</tr>
</tbody>
</table>

Notes
This table applies for a distance of 1,200 mm from each end of each external wall of a building. It applies to the two 600 mm wide panels closest to the corners, and not required to provide racking resistance.

All battens shall be (22.5 x 63 x 0.55 BMT, Grade G550) or equivalent. The surfaces of zinclume battens that are in contact with the ECO Panel (AAC) panel shall be painted with a suitable high build paint to guard against adverse chemical reaction.

All screws shall be No 14g x 100mm Type No 17 self drilling class 3 galvanized screws (or as required by the engineer), fixed to the horizontal steel light gauge battens to the stud.
50mm Eco Panel Floor Systems Design and Installation

Floor systems at Eco Panel are designed to be used in every residential or commercial construction project. With qualities like rigidity, lightweight composition, high fire resistance, and acoustic dampening, Eco Panel performs very well. For fast and clean construction procedures our Floor Systems are available in standard sizes of 2200mm in length and 600mm in width. A high level of quality is maintained in the project from start to finish.

Eco Panel reinforced AAC floor systems are the preferred system in residential construction over timber or steel framed floor joist systems. The 50mm thick, steel reinforced Eco Panel floor panels are manufactured from autoclaved aerated concrete with an average density of 560kg/m³.

The Eco Panel floor panels are supplied in standard sizes of 2200mm in length and 600mm width and have an average weight of approximately 36 kg/panel. Eco Panel floor systems are delivered in packs to site. We take all care to avoid damage to the faces, ends and edges of the panels. Manual handling of floor panels is kept to a minimum; we use trolleys and/or other mechanical devices for delivery of panels.

Health & safety MUST be maintained with respect to Eco Panel floor systems. However when cutting, drilling, sawing, routing, chasing, sanding and in any way breaking up the material there is the potential for health problems to occur. Standard precautionary measures are to be taken by the installer, as per the occupational health and safety act.

In essence the method of installation is the same as laying chipboard flooring except that joists have to be laid out at 440mm centres to match the length of the standard panels. You can combine Eco Panel 50mm Floor Panels with Compressed Sheet flooring to achieve the desired step down for wet areas.

Normal AAC panel tools and sundries are required such as a grinder fitted with a masonry cutting blade, impact drill, bugle batten screws, construction adhesive and a straight edge (to get the first row of panels straight) are a minimum requirement.

PLEASE NOTE: Joists MUST be set out at 440mm centres

- Minimum joist width of 45mm required, but joist width of 63mm or greater is preferred
- Apply construction adhesive to joist.
- Position panel over construction adhesive
- Fix panel to joist with 14gx75mm bugle batten screws (2 screws per joist)
- Min 50mm from panel edges
- Apply construction adhesive on the edge of the panel previously laid where the new panel will come into contact, and to the sections of joist the next panel length will sit on.
- Butt panels end to end
- Ensure panels are aligned by using a straightedge or a laser.
- On the 600mm butt joint, screw into the centre of the joint straight into the joist. The screws should hold both panels down.
- Continue the process while maintaining a 440mm stagger in each new row.
75mm AAC ECO Panel Flooring

Reinforced Eco Panel AAC Flooring for Domestic Dwellings 450 centres

The following specification and details are generally suitable for Reinforced ECO FLOOR PANEL (AAC) for domestic dwellings, subject to confirmation by the Design Engineer. A suitable supporting joist system must be provided.

Reinforced ECO FLOOR PANEL (AAC) Panels shall be screw and adhesive fixed to timber or light-1gauge steel joists, at centres not greater than 450 mm centres. Joists and bearers shall comply with the Drawings, Building Regulations and relevant Standards.

Timber joists and bearers shall comply with AS1684.

Light gauge steel joists and bearers shall comply with (AS/NZS4600, AS3623). Cold-formed sections and accessories shall be manufactured from Z350 galvanized steel (Grade G550) complying with AS1397, with a zinc coating not less than 350 g/m and shall comply with AS4600. The surfaces of zincalume battens are in contact with the Eco Panel AAC shall be painted with a suitable high paint to guard against adverse chemical reaction.

Screws shall be bugle-headed Class 3 or Class 4 galvanized steel screws, fixed through AAC panels into the joists. Timber joists: No 14 x 100 mm galvanized bugle headed screws

Cold-formed steel joists: No 14 x 95 mm hex head self drilling screws.

Construction Adhesive shall be applied between adjacent panels and between panels and joists, in accordance with the manufacturer's recommendations.
Note 1

75 mm floor panels spanning joists at 600 mm centres are suitable for the support of 1.5 kPa distributed or a 1.8 kN point load over an area of 350 mm (located at least 100 mm from the panel edge). This corresponds to the internal loads for domestic housing. The designer and builder must ensure that there is provision to prevent and/or control cracking of any brittle floor coverings, such as tiles, particularly at 600mm joist spacing. In the case of 600mm joist spacing, ductile surfaces are more appropriate.
75mm Reinforced Eco Panel AAC Flooring for Domestic Dwellings 600 centres

The following specification and details are generally suitable for Reinforced ECO FLOOR PANEL (AAC) for domestic dwellings, subject to confirmation by the Design Engineer. A suitable supporting joist system must be provided.

Reinforced ECO FLOOR PANEL (AAC) Panels shall be screw and adhesive fixed to timber or light gauge steel joists, at centres not greater than 600mm centres. Joists and bearers shall comply with the Drawings, Building Regulations and relevant Standards.

- Timber joists and bearers shall comply with AS1684.
- Light gauge steel joists and bearers shall comply with (AS/NZS4600, AS3623). Cold-formed sections and accessories shall be manufactured from Z350 galvanised steel (Grade G550) complying with AS1397, with a zinc coating not less than 350 g/m and shall comply with AS4600.

Screws shall be bugle-headed Class 3 or Class 4 galvanised steel screws, fixed through AAC panels into the joists.

- Timber joists: No 14 x 100 mm galvanised bugle headed screws
- Cold-formed steel joists: No 14 x 95 mm hex head self drilling screws.

Construction Adhesive shall be applied between adjacent panels and between panels and joists, in accordance with the manufacturer's recommendations.
Note 1
75 mm floor panels spanning joists at 600 mm centres are suitable for the support of 1.5 kPa distributed or
a 1.8 kN point load over an area of 350 mm (located at least 100 mm from the panel edge). This
corresponds to the internal loads for domestic housing. The designer and builder must ensure that there is
provision to prevent and/or control cracking of any brittle floor coverings, such as tiles, particularly at
600mm joist spacing. In the case of 600 mm joist spacing, ductile surfaces are more appropriate.
Fixing AAC ECO Panels to Existing Brickwork Party walls

1. Apply ‘Seal N Flex’ Bostick adhesive in dabs onto the panel to glue it directly onto the existing brickwork wall.
2. Prop the panel overnight to cure. Do not remove props until the panel is properly secured by the permanent framing supports.
3. When the flexible sealant is cured, fix the wall frame (including the steel top-hat sections) to the panel, using screws inserted from the inside of the building (rather than the normal method of fixing from the outside of the building). The number of screw fixings should be doubled from normal requirements.

Note

Because the screws are inserted 72mm and the head is not on the outside of the panel, the lateral load capacity could be approximately half of that of the fixing from the outside. This should be provided for by doubling the number of screws. Notwithstanding the reduced capacity, there will be virtually no lateral load on the panel, provided the existing brickwork wall remains in place. If the existing brickwork wall is removed, the wall could be subject to full external wind suction.
Structural Design Example

The purpose of the following worked examples is to provide guidance to structural engineers on the structural design considerations and methodology for ECO PANEL (AAC) reinforced walls, reinforced floors and unreinforced masonry.

- Eco Panel AAC provided as steel reinforced wall panels, are designed in accordance with the recommendations of RILEM Recommended Practice – AAC Properties, Testing and Design. Because this system is outside the scope of the most relevant National Construction Code of Australia reinforced document, AS3700, its use must be treated, under the National Construction Code of Australia, as an Alternative Solution.
- Eco Panel AAC provided as steel reinforced floor panels, are designed in accordance with the recommendations of RILEM Recommended Practice – AAC Properties, Testing and Design.
- Eco Panel AAC provided as autoclaved aerated blocks set in this-bed adhesive, are designed in accordance with AS 3700-2001 Masonry Structures.

Notes

1. Because these systems are outside the scope of the most relevant National Construction Code of Australia referenced documents, AS3700 and AS3600, their use must be treated, under the National Construction Code of Australia, as an Alternative Solution.
2. The designs in this manual are consistent with the requirements of AS3700-2011. The designs are also generally consistent with AS3700-2001. The main difference between the two versions of AS3700 is in the determination of robustness, AS3700-2011 being generally more conservative.
Occupational Health and Safety

The following table sets out the principal considerations of occupational health and safety for the construction of ECO PANEL (AAC) panels.

Activities Covered by these Procedures

1. Receive all materials required for ECO PANEL (AAC) panels onto the site and store off the ground in a safe, secure location.
2. Move the materials to the work site, taking care to avoid back or muscle injury. Use mechanical aids, such as trolleys, forklifts, cranes and multiple able-bodied people to lift and move panels. Plan the sequence of installation to minimize panel movements and avoid awkward lifts. Keep the panels dry.
3. Lift & Support Panels. Where appropriate, use appropriate cranes and slings, lift the panels into position and immediately brace with supports designed and specified by the Structural Engineer.
4. Permanent Fixings - As soon as practical, complete all permanent fixing of the panels to the structure. All such fixings must be designed and specified by the Structural Engineer. Do not remove temporary supports until permanent fixings are secured.
5. Flashing & Weatherproofing - Apply all flashings, renders, weatherproof coatings, and other finishing, as specified in the Drawings and/or Specification.
6. Clean-up - Remove rubbish throughout the installation process, to reduce the risk of slips, trips and falls, which can cause injury, carry out final check, hand over the project.

ECO Panel Products are cement based which may irritate the skin resulting in itching and a rash may appear. The wearing of gloves and suitable clothing to reduce abrasion and irritation of the skin is recommended when handling ECO panel Products.

Limitations:
The worker is not authorized to:

- Use electrical equipment, welding equipment and the like
- Use motorized equipment, except cranes. Separate procedures for the safe use of cranes must be prepared and used.
<table>
<thead>
<tr>
<th>Risks</th>
<th>Precaution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact by mobile equipment</td>
<td>Wear brightly colored shirt or vest</td>
</tr>
<tr>
<td>Impact from falling items</td>
<td>Wear a safety helmet near elevated work</td>
</tr>
<tr>
<td>Back injury or muscle injury</td>
<td>Each 2,700 x 600 x 75 mm AAC panel weighs approximately 90 kg. Do not lift heavy items without assistance. Bend knees and keep back straight when lifting. Avoid strenuous activity if unfit or suffering back or muscle strain</td>
</tr>
<tr>
<td>Foot injury</td>
<td>Wear strong boots, preferably with steel caps</td>
</tr>
<tr>
<td>Heat exhaustion</td>
<td>Drink plenty of fluids, Rest in shaded areas</td>
</tr>
<tr>
<td>Sun damage to skin</td>
<td>Wear a hat, shirt & sunscreen</td>
</tr>
<tr>
<td>Fall from ladder</td>
<td>Ensure top of ladder is secured & protruding at least 1.0m above the floor</td>
</tr>
<tr>
<td>Electrocution</td>
<td>Ensure electrical equipment is safe & tagged Do not use electric power in wet conditions Wear insulated footwear Avoid overhead & hidden power cables</td>
</tr>
<tr>
<td>Fall from scaffold, roofs or elevated floors</td>
<td>Ensure all handrails are installed Do not lean on</td>
</tr>
<tr>
<td>Chemical attack to skin by cement in concrete grout, in some cases leading to dermatitis</td>
<td>Wear gloves and other protective clothing to avoid rash and itchiness.</td>
</tr>
<tr>
<td>Inhalation of dust, particularly while cutting AAC</td>
<td>Wear respirators complying with AS/NZS1715 and AS/NZ1716, and eye protection, complying with AS1336, when cutting and chasing AAC. Refer to Eco Panel Material Safety Data Sheets.</td>
</tr>
<tr>
<td>Collapse of structure</td>
<td>Ensure structure is correctly braced. In particular, ensure that unfinished AAC not tied to permanent supports is braced.</td>
</tr>
</tbody>
</table>
Reinforced ECO Panel AAC Panels

Reinforced AAC Wall Panels and AAC Blocks shall be ECO PANEL (AAC) complying with the following:

- Architectural and Engineering Drawings
- National Construction Code of Australia
- Requirements of “RILEM Recommended Practice – AAC – Properties, Testing and Design”
- Relevant Australian Standard listed previously in this specification. Reinforced AAC wall panels are generally in accordance with the RILEM Recommended Practice, while AAC Blocks are in accordance with AS 3700.

Important Design and Construction Checks

These properties are based on advice from the suppliers.

- The designer must check the availability of the particular products and design accordingly, selecting the appropriate properties.
- In the case of wall panels, the designer must consider loading from both sides of the wall. The required construction detail must be indicated clearly on the drawings.
- The builder must check compliance of the product supplied to site. See also the checklist that forms part of the specification.
- Where the reinforcement is not in the centre of the panel, the designer must indicate clearly on the drawings which sides of the wall it must be placed, and the builder must install it correctly.
- The designer must correctly detail the required connections, and the builder must ensure that they are correctly installed, properly fixing the AAC panels into the building.

Definitions

- Dimensional Category DW0 - No Requirements
- Dimensional Category DW1 - Average deviation of a sample of 20 units; +,- 2.5 mm (dimensions under 150 mm); +,- 4.5 mm (dimensions 150 to 250 mm); +,- 5.0 mm (dimensions over 250 mm)
- Dimensional Category DW4 - For a sample of 20 units, the standard deviation of work sizes shall be not more than 2 mm, and the difference between the mean and the work size shall be not more than 3 mm. For split faces, the dimensional deviations shall not apply to the width of the unit, provided the average width is not less than 90% of the work size.
- General Purpose Salt Attack Resistance Grade - Performance such that it is possible to demonstrate that the product has a history of surviving under non-saline environmental conditions similar to those existing at the site considered, but not expected to meet the mass loss criterion for Exposure Grade Salt Attack Resistance Grade
- Exposure Grade Salt Attack Resistance Grade - Performance such that it is possible to demonstrate that the product has a history of surviving under saline environmental conditions similar to those existing at the site considered; and less than 0.2 grams mass loss in 40 cycles in AS/NZS 4456.10, Method B test.
Thin Bed Adhesive

Thin Bed Adhesive shall be mixed and applied in accordance with the manufacturer’s instructions. Most important, the adhesive should not be re-tempered as this will have a detrimental effect on the bond strength on the panel adhesive.

Thin Bed Adhesive is used for gluing the panels together at all joints. Typically, panel joints are 2-3mm thick. Sufficient pressure is to be applied to the joint to ensure full coverage of adhesive in the joint.

Provision for Timber Shrinkage

In AAC veneer construction, a gap in accordance with schedule below shall be left between the timber frame and the top of the AAC, and at window sills, to accommodate timber shrinkage.

<table>
<thead>
<tr>
<th>Location in timber framed buildings</th>
<th>Minimum Clearances (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unseasoned hardwood frame</td>
</tr>
<tr>
<td>Sills of lower or single storey windows</td>
<td>10 mm</td>
</tr>
<tr>
<td>Roof overhangs of single storey buildings</td>
<td>16 mm</td>
</tr>
<tr>
<td>Sills of second storey windows</td>
<td>20 mm</td>
</tr>
<tr>
<td>Roof overhangs of two storey buildings</td>
<td>24 mm</td>
</tr>
</tbody>
</table>
Extending Panels

ECO PANEL (AAC) panels may be extended up to 200mm by gluing additional pieces to them using thin-bed adhesive; provided both parts are supported by timber or steel battens (or similar) and the overall length between control or articulation joints does not exceed the values specified above.

Render and Paint Schedule

The following render and paint system shall be applied to AAC walls. Refer to Render and Paint Specification for suitable products (Appendix).

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Autoclaved Aerated Concrete (AAC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finish</td>
<td>Acrylic render with Texture Coating.</td>
</tr>
<tr>
<td>Performance</td>
<td>Water-resistant and vapor-permeable decorative coating, capable of bridging up to a 1 mm substrate crack.</td>
</tr>
<tr>
<td>Surface Preparation</td>
<td>Clean, patch and remove any dags. Ensure that the surface is free of all incompatible materials, such as silicone sealants. If subject to sea spray or within 1 km of a surf coast, wash with clean fresh water to remove all traces of salt.</td>
</tr>
<tr>
<td>First Coat</td>
<td>Skim coat 3 to 4 mm thick acrylic render, hawk and steel trowel to level small irregularities. Do not render over control joints.</td>
</tr>
<tr>
<td>Second Coat</td>
<td>Skim coat 3 to 4 mm thick acrylic render, hawk and steel trowel to level small irregularities do not render over control joints</td>
</tr>
<tr>
<td>Third Coat</td>
<td>Trowel-on or roll-on Chad Surface texture acrylic coating. Dry for 24 hours before applying further coat.</td>
</tr>
</tbody>
</table>
Associated Materials Schedule

Renders and Paints

Renders and paints shall comply with the following:
- First Coat: Skim coat 2 to 4 mm thick acrylic render, hawk or steel trowel to level small irregularities.
- Second Coat: Primer suitable for acrylic overcoats. Third Coat: Trowel-on or roll-on texture acrylic coating.
- Fourth Coat: Roller, airless spray or brushed 100% acrylic heavy duty durable coating.

<table>
<thead>
<tr>
<th>Specified Requirements</th>
<th>Complying product reference</th>
<th>Contact for further details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylic Render – First Coat</td>
<td>FR Render Chad Surface Coatings or Trade Render</td>
<td>CHAD Group Pty Ltd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(03) 9544 8899</td>
</tr>
<tr>
<td>Acrylic Render – Second Coat</td>
<td>Trade Render</td>
<td>1366 North Road Oakleigh South</td>
</tr>
<tr>
<td>Textured acrylic coating – Third Coat</td>
<td>Texture Coatings: CHAD Surface Coatings Trowel-on Marble Texture medium or coarse</td>
<td></td>
</tr>
<tr>
<td>Acrylic heavy duty durable coating if requested.</td>
<td>Chad Surface Coatings Membrane Coating</td>
<td></td>
</tr>
</tbody>
</table>

Joint Material

Joint material shall comply with the Drawings, National Construction Code of Australia and relevant Standard (AS 3700). Unless stated otherwise:

- Backing rod for control joints, expansion joints and articulation joints shall be expanded polystyrene tube or bead or, rigid steel backing profile with closed cell foam adhered to the metal profile face.
- Joint sealant shall be gun grade multi-purpose polyurethane sealant.
- Control joints and articulation joints shall incorporate de-bonding tape.

Intumescent seals shall be one-part, water-borne, urethane polymer blended with acrylic co-polymer to give a tough and gunnable sealant capable of providing the requisite fire performance as specified in the Drawings and/or National Construction Code of Australia as appropriate.
Damp Proof Course

Damp-proof courses (DPCs) shall comply with the Drawings, National Construction Code of Australia and relevant Standard (AS 3700, AS/NZS 2904). Unless stated otherwise damp-proof courses (DPCs) shall consist of one of the following options.

- A material complying with the Standard AS/NZS 2904;
- Embossed black polyethylene film of high impact resistance and low slip, with a nominal thickness of 0.5 mm prior to embossing, and meeting the requirements of the relevant Standard (Clause 7.6 of AS/NZS 2904);
- Polyethylene coated metal damp proof courses with an aluminium core not less than 0.1mm thick, shall be coated both sides with bitumen adhesive enclosed in polyethylene film not less than 0.1 mm thick on each face, and has a nominal total thickness of not less than 0.5 mm prior to embossing;
- Bitumen impregnated materials of not less than 2.5 mm thickness, that meet the requirements of the relevant Standard (Clause 7.5 of AS/NZS 2904), when used in walls that are not higher than 7.8 m above the level of the DPC;

Termite shields (with no penetrations) continuous throughout the wall or pier.

Notes: Metal and metal-cored damp-proof courses and termite shields shall not be used in locations with saline ground water or subject to rising salt damp
Flashings

Flashings shall comply with the Drawings, National Construction Code of Australia and relevant Standard (AS3700, AS/NZS 2904).

- Metal and metal-cored flashings shall not be used in locations that expose them to saline ground water or rising salt damp.
- Metal flashings shall be compatible with the materials with which they are in contact, and shall not give rise to electrolytic action. If there is potential for electrolytic action to occur, flashings shall be isolated by inert materials.
- Flashings intended to hold their shape shall be manufactured from rigid material. (e.g. metal cored material)

Unless stated otherwise flashings shall consist of one of the following options: Flashing in Concealed Locations (e.g. cavity flashings) shall be one of the following:

- Uncoated annealed lead having a mass not less than 10 kg/m in lengths not exceeding 1.5 m, shall not be used on any roof that is used to catch potable water;
- Uncoated copper having a mass not less than 2.8 kg/m and having a thickness of 0.3 to 0.5 mm;
- Bitumen coated metal (normally aluminium) with a total coated thickness of 0.6 mm to 1.0 mm;
- Zinc coated steel with a thickness not less than 0.6 mm;
- Embossed/quilted polyethylene sheet with an average thickness not less than 0.5 mm Flashings in Exposed Locations (e.g. flashings from the roof to wall) shall be one of the following:
- Uncoated annealed lead having a mass not less than 20 kg/m in lengths not exceeding 1.5 m, but shall not be used on any roof that is used to catch potable water;
- Uncoated copper having a mass not less than 2.8 kg/m and having a thickness of 0.3 to 0.5 mm;
- Bitumen coated metal (normally aluminium) with a total coated thickness of 0.6 mm to 1.0 mm;
- Zinc coated steel of thickness not less than 0.6 mm.
Cladding of a Domestic Dwelling

The following specification and details are generally suitable for Reinforced AAC wall cladding for domestic dwellings, subject to confirmation by the Design Engineer. A suitable support framing system must also be provided.

Reinforced AAC Panels shall be screw fixed to horizontal light-gauge steel battens, which are fixed to vertical steel studs. There shall be not less than four horizontal battens per panel, with this number increasing for higher wind loads and for panels within 1,200 mm of the building corners.

Panels within 1,200 mm of each end of each external wall of a building (i.e. the two 600 mm wide panels closest to the corners) are subject to higher local wind pressures and suctions, and therefore require more battens and more screw fixing than other panels.

Unless specified otherwise by the engineer, the following details and tables shall be used for the cladding of domestic dwellings with 75 mm thick or 100 mm thick Reinforced AAC Panels.

Light gauge steel battens shall comply with the Drawings, Building Regulations and relevant Standards (AS/NZS 4600, AS 3623). Cold-formed sections and accessories shall be manufactured from Z350 galvanised steel (Grade G550) complying with AS 1397, with a zinc coating not less than 350 g/m2 and shall comply with AS4600. All battens shall be 24 x 30 x 0.55 BMT Top Hat, Grade G550) or equivalent.

All screws shall be No 14 x 100 mm Bugle-headed batten self drilling galvanised steel screws, fixed from outside of the building through the AAC panels into the horizontal steel light gauge battens behind General Notes:

1. All wind classifications and ultimate pressure calculations are based AS 4055-2006.
2. If AAC Panels are required to provide racking resistance, the screws and supports shall be determined by the structural engineer, taking into account the wind classification and the overall building dimensions.
1. Top and bottom battens shall be positioned within 150 mm of the ends of the panels
Appendix

Party Wall Applications

Mineral fibre or other fire resisting material as per architect specifications

Break in wall

Expansion joint filled with fire mastic

1200mm Max Spacing between panel fixing brackets

600mm Max Spacing between vertical joint and fixing brackets

Break in wall

75mm Eco Panel

10mm – 20mm Air Gap each side of panel

Eco Panel fixing to continuous steel channel anchors @ 600CC max or panel fixing brackets
In the preparation of these specifications and drawings, the following convention has been adopted.

- All building design and construction must comply with the relevant National Construction Code of Australia and any relevant Standards referred to therein.
- The structural behaviour of the AAC panels and the associated screw connections have been determined by bending and pullout tests carried out in Australia, which have been analysed in accordance with AS/NZS 1170.0 Appendix B and the following document: Aroni, S., de Groot, G.J., Robinson, M.J., Svanholm, G., & Wittman, F.H. (Editors), “RILEM Recommended Practice – Autoclaved Aerated Concrete – Properties, Testing and Design”.
- If either of the above do not cover the construction, then it should comply with a balanced combination of current practice, engineering principles and supplier’s information.
- The structural behaviour of the AAC panels and the associated screw connections have been determined by bending and pullout tests carried out in Australia, which have been analysed in accordance with AS/NZS 1170.0 and the following document: Aroni, S., de Groot, G.J., Robinson, M.J., Svanholm, G., & Wittman, F.H. (Editors), “RILEM Recommended Practice – Autoclaved Aerated Concrete – Properties.”
Single Storey Construction Details - 75mm & 100mm

Single Storey Construction - Detail Panel Supported at Base

Sisalation behind channel
(Not shown)

Single Storey Construction - Detail Panel Suspended

Sisalation behind channel
(Not shown)
Single Storey Construction - Hip Roof Elevation - 75mm & 100mm

Single Storey Construction - Gable End Elevation

Additional Battons may be required

NOTE

1. Number of top hats and top hat spacing to be confirmed by the building designer.
2. Additional top hats may be required, refer to Section 5.

These details have not shown the set-out of top hats to accommodate control joint locations. This is the responsibility of the building designer.
Single Storey Construction - Typical Section Detail
50mm, 75mm & 100mm

Penetration through ACC Panel for services should be neatly drilled and the joint

Top of window or external doors

Sisalation

Penetration through ACC Panel for services should be neatly drilled and the joint

Reinforced concrete slab

Reinforced concrete footing

Distance to satisfy relevant authority requirements

Top hat section

20-25mm gap in panel typical

Penetration through ACC Panel for services should be neatly drilled and the joint

Top of window or external doors

Penetration through ACC Panel for services should be neatly drilled and the joint

Reinforced concrete slab

Reinforced concrete footing

80mm Min. (Max. panel overhang is 25mm)
50mm, 75mm & 100mm -

Sisalation behind channel
(Not shown)
75mm & 100mm

Sisalation

Timber stud frame

Top hat section

50 Min.

Refer to Detail Page 63

Deflection gap see below

Timber joist

Steel joist

Reinforced concrete slab

Reinforced concrete footing

Refer to Detail G

Steel stud frame

Top of window

Top of window
Second Story Addition

Sisalation behind channel
(Not shown)
75mm & 100mm

Refer to Detail G
AAC Eco panel

Timber stud frame

Top of window

Sisalation

Top hat section

Timber flooring

250 mm

Existing timber frame

Existing brick veneer

Reinforced concrete slab

Reinforced concrete footing

FGL

DPC

Refer to Detail Pg 63

Existing double brickwork

Refer to Detail G
AAC Eco panel
NOTE

1. When positioning the stud frames allow 5-7mm extra cavity width for the sheet bracing between top hat and timber stud.
2. Internal Fixing Detail not suitable when sarking/air barrier or sheet bracing systems are being used.

Screw Layout Drawing
Footing Fixing Details - 50mm, 75mm & 100mm

Detail A

Detail B

Detail C

Detail D
Footing Fixing Details continued - 50mm, 75mm & 100mm

Diagram A
- Fix 100 x 75 x 8mm galvanised angle to piers (Max. 2m centres) with 1-M12 at each end
- Minimum bearing of panel on angle is 40mm
- Approved termite barrier system as required (expressed at outside surface)
- Precoat brick pier
- Sisalation

Diagram B
- 80 x 50 x 1.9mm galvanised angle 1-M6 Dynabolt @ 600 cts (2Min.)
- 3/16-10 x 95mm Hex Head self-drilling screws at each end of panel
- Backing rod
- Polyurethane sealant

Diagram C
- AAC Eco panel
- Reinforced concrete slab
- >20mm and <75mm
- FGL

Diagram Note
- Provide suitable physical or chemical barrier in accordance with AS 3660
- Footing to engineer's details

Sisalation
Wall Junction Details - 50mm, 75mm & 100mm

Details G

Details I

Details J
50mm, 75mm & 100mm

Parapet Capping

Beam Penetration Detail

NOTE

1. Galvanised steel angle required if additional top hats are not installed.
2. Additional top hats may be required.

NOTE

Parapet capping shall be designed and fastened in accordance with SAA – HB39 1997 – Installation Code for Metal Roofing and Wall Cladding. Stop ends shall be incorporated to all flashings.
Control Movement Joint Detail - 50mm, 75mm & 100mm

Details O

Details P

Details Q

Details R

Details S
Door & Window Fixing Details - 50mm, 75mm & 100mm

NOTE
1. The detail above DOES NOT represent a true control joint but provides a solution where the width of the window is 10-15mm wider than the total number of ACC Panels installed under the windows.
2. Detailing of coating system at dummy joint & control joint to coating system manufacturer’s specification.
3. Depth and width of sealant and installation to be in accordance with the manufacturer’s specification.

Head Sizes Detail

NOTE
1. If a control joint is required, it must be installed regardless.
2. For heads above hinged doors, adopt these guidelines.
3. For sliding glass doors, always place a control joint at both sides of the head.
4. For glued joint, ensure the top hats running behind the head and/or sill are fixed to the full height vertical ACC Panel.
Drainage of window and door sills, in either aluminium or timber, should be directed to the outside of the building, on top of the window sill. AAC recommends waterproofing the AAC surface around the perimeter of the window opening. Provide an overlap of the waterproof coating and the external coating.
Sliding Door Sill Detail - Elevation View - 50mm, 75mm & 100mm

Sliding Door Sill Detail - Section View

Timber Door - Jamb Detail

Detail AC

Detail AD

Detail AE
AAC ECO WALL & FLOOR PANEL & BLOCK PRODUCT RANGE WARRANTY

Warrants that this product will be free from defects in material and workmanship for a period of 7 years from the date of purchase.

This warranty will not apply if, in the opinion of CHAD GROUP P/L the product has been:

- installed and maintained other than in compliance with the manufacturer’s specifications and technical manual;
- handled in a manner which contravenes CHAD GROUP P/L warnings or Material Safety Data Sheet;
- misused, abused, altered or damaged by you in any way;
- attached to materials of poor quality, workmanship, design or detailing or which are subject to movement whether structural or otherwise;
- attached or used in a project that has not been designed and constructed in strict compliance with current, National Construction Code regulations and standards; or
- damaged through normal wear and tear including exposure to the elements (on both exposed and unexposed surfaces) resulting in the growth of any organism including but not limited to mildew, mould, bacteria or other growth on the Product.

CHAD GROUP P/L reserves the right at its sole discretion to determine whether to repair or replace any faulty product free of charge for parts and labour or to give a refund in respect of of the faulty product.

The benefits conferred by this warranty are in addition to all other non-excludable rights and remedies in respect of the product which the you may have under the Trade Practices Act and any similar laws in Australia or elsewhere. To the maximum extent permitted by law, CHAD GROUP P/L liability for any non-excludable condition or warranty is limited, at CHAD GROUP P/L discretion to the replacement of the relevant product or supply of equivalent product; the repair of the relevant product, the payment of the cost of having the relevant product replaced or acquiring equivalent product, or paying the costs of any necessary repair.

To the maximum extent permitted by law, CHAD GROUP P/L excludes all other conditions and warranties implied by custom, the general law or statute. CHAD GROUP P/L also excludes the provisions of the United Nations Convention on Contracts for the International Sale of Goods. Proof of purchase must be provided when making any claim under this warranty, and should be retained by the purchaser at all times.